:tocdepth: 2 Prop TB ======================== .. toctree:: :hidden: codePropTB **propTB** gets the field Time Evolution. **propTB** can: * consider linear time dependent Schrödinger equation. * consider non-linear time dependent Schrödinger equation. Examples -------------------------------------- Lieb Lattice - Passive amplication of a zero-mode: .. code:: from latticeTB import * from eigTB import * from plotTB import * from propTB import * from math import pi from collections import OrderedDict nx, ny = 9, 9 ri = [[0, 0], [1, 0], [0, 1]] tags = [b'a', b'b', b'c'] lat_lieb = latticeTB(tags=tags, ri=ri, nor=2, ang=pi/2) lat_lieb.get_lattice(nx=nx, ny=ny) lat_lieb.remove_dangling(nor_bond=1.) eig_lieb = eigTB(lat_lieb) t1, t2 = 1., 2. eig_lieb.set_hop([t1, t2]) eig_lieb.set_onsite([0, -.2j, -.2j]) eig_lieb.get_ham() eig_lieb.get_eig(eigenvec=True) zero_mode = eig_lieb.get_state_pola(pola_tag=b'a') plt_lieb = plotTB(eig_lieb) fig_lat = plt_lieb.plt_lattice(ms=15) fig_spec = plt_lieb.plt_spec(pola_tag=b'a') fig_zero_mode = plt_lieb.plt_intensity(zero_mode) prop = propTB(lat=lat_lieb, steps=150, dz=0.05) psi_init = np.ones(eig_lieb.sites, 'c16') / np.sqrt(eig_lieb.sites) prop.get_prop(ham=eig_lieb.ham, psi_init=psi_init, norm=True) ani = prop.get_ani(s=200) plt.show() save_lieb = saveFigTB(sys=eig_lieb, dir_name='lieb', params=OrderedDict([('t1', t1), ('t2', t2)])) save_lieb.save_fig_lat(fig_lat, 'lat') save_lieb.save_fig_lat(fig_spec, 'spec') save_lieb.save_fig(fig_zero_mode, 'zero_mode') save_lieb.save_ani(ani, 'ani') .. image:: ../TBfig/lieb_n225/lat.png :height: 100px :width: 45% .. image:: ../TBfig/lieb_n225/spec_ea0j_eb-2j_ec-2j_t1(1+0j)_t2(0,2+0j).png :height: 100px :width: 45% .. image:: ../TBfig/lieb_n225/zero_mode_ea0j_eb-2j_ec-2j_t1(1+0j)_t2(0,2+0j).png :height: 100px :width: 55% :align: center Feedback ^^^^^^^^^^^^^^ Please send comments or suggestions for improvement to cpoli83 at hotmail dot fr