Source code for tbee.graphene

from tbee.lattice import *
from tbee.plot import *
from tbee.system import *
from math import sqrt

PI = np.pi
ATOL = 1e-3
DX = 0.5 * sqrt(3)
DY = 0.5

 
#################################
# CLASS GRAPHENE
#################################

       
[docs]class grapheneLat(lattice): def __init__(self): unit_cell = [{'tag': b'a', 'r0': (0, 0)}, {'tag': b'b', 'r0': (DX, DY)}] prim_vec = [(2*DX, 0.), (DX, 1.5)] lattice.__init__(self, unit_cell=unit_cell, prim_vec=prim_vec) self.butterfly = np.array([]) self.betas = np.array([])
[docs] def triangle_zigzag(self, n): ''' Triangular flake with zigzag terminations. :param: n. Int. Number of plackets along the edges. ''' error_handling.positive_int(n, 'n') self.get_lattice(n1=n+2, n2=n+2) self.boundary_line(cx=-sqrt(3), cy=-1, co=-3*n+2)
[docs] def hexagon_zigzag(self, n): ''' Hexagonal flake with zigzag terminations. :param: n. Int. Number of plackets along the edges. ''' error_handling.positive_int(n, 'n') self.get_lattice(n1=2*n, n2=2*n) self.boundary_line(cx=sqrt(3), cy=1, co=3*(n-1)) self.boundary_line(cx=-sqrt(3), cy=-1, co=-9*n+2.5)
[docs] def triangle_armchair(self, n): ''' Triangular flake with armchair terminations. :param: n. Int. Number of plackets along the edges. ''' error_handling.positive_int(n, 'n') self.get_lattice(n1=2*n, n2=2*n) self.boundary_line(cx=1, cy=0, co=sqrt(3)/2*(2*n-1)-0.1) self.boundary_line(cx=-1/sqrt(3), cy=1, co=-n-0.1) self.boundary_line(cx=-1/sqrt(3), cy=-1, co=-4*n+0.1)
[docs] def hexagon_armchair(self, n): ''' Hexagonal flake with armchair terminations. :param: n. Int. Number of plackets along each edge. ''' error_handling.positive_int(n, 'n') nn = 3 * n - 2 self.get_lattice(n1=2*nn, n2=2*nn) self.boundary_line(cx=1, cy=0, co=sqrt(3)/2* (2*nn-1)-.1) self.boundary_line(cx=-1/sqrt(3), cy=1, co=-nn -.1) self.boundary_line(cx=-1/sqrt(3), cy=-1, co=-4*nn +1-.1) self.coor['x'] -= self.coor['x'].min() self.boundary_line(cx=-1, cy=0, co=-DX * 2*nn-0.1) self.boundary_line(cx=1/sqrt(3), cy=1, co=3*n -3.) self.boundary_line(cx=1/sqrt(3), cy=-1, co=-6*n+4)
[docs] def square(self, n): ''' Squared flake. :param: n. Int. Number of plackets along x. ''' error_handling.positive_int(n, 'n') n2 = int(1.5*DX*n) self.get_lattice(n1=2*n, n2=n2) self.boundary_line(cx=1, cy=0, co=DX*(2*n-2)+0.1) self.boundary_line(cx=-1, cy=0, co=-DX*(4*n)+0.5)
[docs] def circle(self, n): ''' Circular flake. :param: n. Int. Number of plackets along the diameter. ''' error_handling.positive_int(n, 'n') self.get_lattice(n1=2*n, n2=2*n) self.sites = len(self.coor) self.center() if n % 2 == 0: self.shift_x(shift=-DX) self.ellipse_in(rx=DX*(n+1), ry=DX*(n+1), x0=0., y0=0.) self.remove_dangling()
[docs]class grapheneSys(system): def __init__(self, lat): system.__init__(self, lat)
[docs] def set_hop_linear_strain(self, t, beta): ''' Set nearest neighbors hoppings according to the linear trixial strain. :param t: Hopping value without strain. :param beta: Strength of the strain. ''' error_handling.number(t, 't') error_handling.real_number(beta, 'beta') self.get_distances() ind = np.argwhere(np.isclose(self.dist_uni[1], self.vec_hop['dis'], atol=ATOL)) ind_up = ind[ind[:, 1] > ind[:, 0]] self.hop = np.zeros(len(ind_up), dtype=[('n', 'u2'), ('i', 'u4'), ('j', 'u4'), ('ang', 'f8'), ('tag', 'S2'), ('t', 'c16')]) self.hop['n'] = 1 self.hop['i'] = ind_up[:, 0] self.hop['j'] = ind_up[:, 1] self.hop['ang'] = self.vec_hop['ang'][ind_up[:, 0], ind_up[:, 1]] # change angle (to get the correct strain) self.hop['ang'][np.isclose(30., self.hop['ang'], ATOL)] = -150. self.hop['ang'][np.isclose(150., self.hop['ang'], ATOL)] = - 30. x_center = .5 * (self.lat.coor['x'][ind_up[:, 0]] + self.lat.coor['x'][ind_up[:, 1]]) y_center = .5 * (self.lat.coor['y'][ind_up[:, 0]] + self.lat.coor['y'][ind_up[:, 1]]) self.hop['t'] = t * (1. + 0.25 * beta * (np.cos(PI / 180 * self.hop['ang']) * x_center + np.sin(PI / 180 * self.hop['ang']) * y_center)) # back to the former angle self.hop['ang'][np.isclose(-150., self.hop['ang'])] = 30. self.hop['ang'][np.isclose(-30., self.hop['ang'])] = 150.
[docs] def get_butterfly(self, t, N): '''' Get energies depending on strain. :param t: Unstrained hopping value. :param N: number of strain values between min and max strains. ''' error_handling.number(t, 't') error_handling.positive_int(N, 'N') beta_lims = self.get_beta_lims() self.betas = np.linspace(beta_lims[0], beta_lims[1], N) self.butterfly = np.zeros((N, self.lat.sites)) for i, beta in enumerate(self.betas): self.set_hop_linear_strain(t=1, beta=beta) self.get_ham() self.butterfly[i] = LA.eigvalsh(self.ham.toarray())
[docs] def get_beta_lims(self): ''' Get the extremal values of strain keeping positive hoppings. ''' beta_lims = np.zeros(2) yb_min_val = self.lat.coor['y'][self.lat.coor['tag'] == b'b'].min() yb_min = self.lat.coor['y'][self.lat.coor['y'] == yb_min_val][0] ym = 0.5 * (2 * yb_min + 1) beta_lims[1] = -4. / ym + 1e-6 yb_max_val = self.lat.coor['y'][self.lat.coor['tag'] == b'a'].max() yb_max = self.lat.coor['y'][self.lat.coor['y'] == yb_max_val][0] ym = 0.5 * (2 * yb_max - 1) beta_lims[0] = -4. / ym + 1e-6 print('Strain limits: {}'.format(beta_lims)) return beta_lims