Source code for tbee.system

import numpy as np
import scipy.sparse as sparse
import scipy.linalg as LA
import numpy.random as rand
import numpy.core.defchararray as npc
from math import sin, cos
import tbee.error_handling as error_handling


PI = np.pi
ATOL = 1e-3


[docs]class system(): ''' Solve the Tight-Binding eigenvalue problem of a lattice defined by the class **lattice**. :param lat: **lattice** class instance. ''' def __init__(self, lat): error_handling.lat(lat) self.lat = lat self.sites = self.lat.sites # used to check if sites changes self.coor_hop = np.array([], dtype=[ ('x', 'f8'), ('y', 'f8'), ('tag', 'S1')]) self.vec_hop = np.array([], dtype=[('dis', 'f8'), ('ang', 'f8')]) # Hopping distances and angles self.dist_uni = np.array([], 'f8') # Different hopping distances self.store_hop = {} # Store the relevant hoppings (dynamic programming) self.hop = np.array([], dtype=[('n', 'u2'), ('i', 'u4'), ('j', 'u4'), ('ang', 'f8'), ('tag', 'S2'), ('t', 'c16')]) # Hoppings to build-up the Hamiltonian self.onsite = np.array([], 'c16') # Onsite energies self.ham = sparse.csr_matrix(([], ([], [])), shape=(self.lat.sites, self.lat.sites)) # Hamiltonian self.en = np.array([], 'c16') # Eigenenergies self.rn = np.array([], 'c16') # Right eigenvectors: H |rn> = en |rn> self.ln = np.array([], 'c16') # Left eigenvectors: <ln| H = en <ln| self.intensity = np.array([], 'f8') # Intensities (|rn|**2) self.pola = np.array([], 'f8') # sublattices polarisation (|rn^{(S)}|**2) self.petermann = np.array([], 'f8') # Inverse Participation Ratio self.nmax = 0 # number of different hoppings
[docs] def clear_hopping(self): ''' Clear structured array *hop*. ''' self.hop = np.array([], dtype=[('n', 'u2'), ('i', 'u4'), ('j', 'u4'), ('ang', 'f8'), ('tag', 'S2'), ('t', 'c16')])
[docs] def get_distances(self): ''' Private method. Get distances and angles of the edges. ''' error_handling.sites(self.lat.sites) dif_x = self.lat.coor['x'] - self.lat.coor['x'].reshape(self.lat.sites, 1) dif_y = self.lat.coor['y'] - self.lat.coor['y'].reshape(self.lat.sites, 1) dist = np.sqrt(dif_x ** 2 + dif_y ** 2) ang = (180 / PI * np.arctan2(dif_y, dif_x)) self.vec_hop = np.zeros(dist.shape, dtype=[('dis', 'f8'), ('ang', 'f8')]) self.vec_hop['dis'] = dist self.vec_hop['ang'] = ang self.dist_uni = np.unique(self.vec_hop['dis'].round(4))
[docs] def print_distances(self, n=1): ''' Print distances and positive angles (in degrees) :math:`\phi_+\in[0, 180)` of the nth shortest edges. Negative angles are given by: :math:`\phi_-= \phi_+-180` and :math:`\phi_+\in[-180, 0)`. :param n: Positive integer. Number of shortest edges. ''' error_handling.sites(self.lat.sites) self.get_distances() self.nmax = len(self.dist_uni) - 1 error_handling.positive_int_lim(n, 'n', self.nmax) print('\n{} different distances between sites:'.format(self.nmax)) print('\nDistances between sites:') for i, d in enumerate(self.dist_uni[1: n+1]): if i == 0: hop_name = 'st' elif i == 1: hop_name = 'nd' elif i == 2: hop_name = 'rd' else: hop_name = 'th' print('{}{} hopping, length: {:.3f}'.format(i+1, hop_name, d)) print('\twith positive angles:') positive_ang = self.vec_hop['ang'][np.isclose(d, self.vec_hop['dis'], atol=ATOL) & (self.vec_hop['ang'] >= 0.) & (self.vec_hop['ang'] < 180.)] print('\t', np.unique(positive_ang.round(4)))
[docs] def set_onsite(self, dict_onsite): ''' Set onsite energies. :param on: Array. Sublattice onsite energies. Example usage:: # Line-Centered Square lattice sys.set_onsite({b'a': -1j, {b'b':, -2j}}) ''' error_handling.sites(self.lat.sites) error_handling.set_onsite(dict_onsite, self.lat.tags) self.onsite = np.zeros(self.lat.sites, 'c16') for tag, on in dict_onsite.items(): self.onsite[self.lat.coor['tag'] ==tag] = on
[docs] def fill_store_hop(self, n): ''' Private method. Store in *store_hop* indices (with :math:`i < j`), positive angles, tags (up and low) of a given type of hopping. ''' ind = np.argwhere(np.isclose(self.dist_uni[n], self.vec_hop['dis'], atol=ATOL)) ind_up = ind[ind[:, 1] > ind[:, 0]] hop = np.zeros(len(ind_up), dtype=[('n', 'u2'), ('i', 'u4'), ('j', 'u4'), ('ang', 'f8'), ('tag', 'S2')]) hop['i'] = ind_up[:, 0] hop['j'] = ind_up[:, 1] hop['ang'] = self.vec_hop['ang'][ind_up[:, 0], ind_up[:, 1]] hop['tag'] = npc.add(self.lat.coor['tag'][ind_up[:, 0]], self.lat.coor['tag'][ind_up[:, 1]]) self.store_hop[n] = hop
[docs] def set_hopping(self, list_hop, low=False): ''' Set lattice hoppings. :param list_hop: List of Dictionaries. Dictionary with keys ('n', 'ang', 'tag', 't') where: * 'n' Positive integer, type of hoppings: * 'n': 1 for nearest neighbours. * 'n': 2 for next-nearest neighbours. * 'n': 3 for next-next-nearest neighbours. * etc... * 'ang' value, float, angle, in deg, of the hoppings. (optional). Hopping angles are given by the method *print_distances*. * If :math:`ang \in[0, 180)`, fill the Hamiltonian diagonal up. * If :math:`ang \in[-180, 0)`, fill the Hamiltonian diagonal low. * 'tag' binary string of length 2 (optional). Hopping tags. * 't' Complex number. Hopping value. :param low: Boolean. Default value False. * True get hoppings with (:math:`i<j`) *i.e.* fill the Hamiltonian lower part. * False get hoppings with (:math:`i>j`) *i.e.* fill the Hamiltonian upper part. Example usage:: # fill upper part: sys.set_hopping([{'n': 1, t: 1.}]) # fill lower part: sys.set_hopping([{'n': 1, t: 1.}], low=True) # fill upper part: specifying the angles: sys.set_hopping([{'n': 1, 'ang': 0., t: 1.}, {'n': 1, 'ang': 90, t: 2.}]) # fill lower part: sys.set_hopping([{'n': 1, 'ang': -180., t: 1.}, {'n': 1, 'ang': -90, t: 2.}], low=True) # fill upper part: specifying the tags: sys.set_hopping([{'n': 1, 'tag': b'ab', t: 1.}, {'n': 1, 'tag': b'ba', t: 2.}]) # fill lower part: sys.set_hopping([{'n': 1, 'tag': b'ab', t: 1.}, {'n': 1, 'tag': b'ba', t: 2.}], low=True) # fill upper part: specifying the angles and tags: sys.set_hopping([{'n': 1, 'ang': 0., 'tag': b'ab', t: 1.}, {'n': 1, 'ang': 0., 'tag': b'ba', t: 2.}, {'n': 1, 'ang': 90., 'tag': b'ab', t: 3.}, {'n': 1, 'ang': 90., 'tag': b'ba', t: 4.}]) # fill lower part: sys.set_hopping([{'n': 1, 'ang': 0., 'tag': b'ab', t: 1.}, {'n': 1, 'ang': 0., 'tag': b'ba', t: 2.}, {'n': 1, 'ang': 90., 'tag': b'ab', t: 3.}, {'n': 1, 'ang': 90., 'tag': b'ba', t: 4.}]), low=True) .. note:: A Hermitian hopping matrix can be build-up only using its upper part OR only using its lower part. The full matrix is then automatic built by Hermitian conjugaison. If both upper AND lower parts are used to build up the hopping matrix. non Hermitian conjugaison is not performed *i.e.* non-Hermitian hopping matrix can be built. ''' error_handling.sites(self.lat.sites) error_handling.boolean(low, 'low') self.get_distances() self.nmax = len(self.dist_uni) - 1 error_handling.set_hopping(list_hop, self.nmax) list_n = np.unique([dic['n'] for dic in list_hop]) # fill, if needed self.store_hop self.check_sites() for n in list_n: if n not in self.store_hop: self.fill_store_hop(n) # fill self.hop for dic in list_hop: if len(dic) == 2: size = len(self.store_hop[dic['n']]) if not low: mask = (self.hop['n'] == dic['n']) & (self.hop['i'] < self.hop['j']) else: mask = (self.hop['n'] == dic['n']) & (self.hop['i'] > self.hop['j']) if np.sum(mask): self.hop = self.hop[np.logical_not(mask)] ind = np.ones(size, bool) hop = self.set_given_hopping(dic['n'], size, dic, ind, low=low) elif len(dic) == 3 and 'ang' in dic: error_handling.angle(dic['ang'], np.unique(self.store_hop[dic['n']]['ang']), low) if dic['ang'] >= 0: ang_store = dic['ang'] else: ang_store = dic['ang'] + 180. size = np.sum(np.isclose(ang_store, self.store_hop[dic['n']]['ang'], atol=ATOL)) mask = (self.hop['n'] == dic['n']) & np.isclose(self.hop['ang'], dic['ang'], atol=ATOL) if np.sum(mask): self.hop = self.hop[np.logical_not(mask)] ind = np.isclose(ang_store, self.store_hop[dic['n']]['ang'], atol=ATOL) error_handling.index(ind, dic) hop = self.set_given_hopping(dic['n'], size, dic, ind, low=low) elif len(dic) == 3 and 'tag' in dic: if not low: tag_store = dic['tag'] else: tag_store = dic['tag'][::-1] size = np.sum(self.store_hop[dic['n']]['tag'] == tag_store) mask = (self.hop['n'] == dic['n']) & (self.hop['tag'] == dic['tag']) if not low: mask = self.hop['n'] == dic['n'] & (self.hop['tag'] == dic['tag']) & (self.hop['i'] < self.hop['j']) else: mask = self.hop['n'] == dic['n'] & (self.hop['tag'] == dic['tag']) & (self.hop['i'] > self.hop['j']) if np.sum(mask): self.hop = self.hop[np.logical_not(mask)] ind = self.store_hop[dic['n']]['tag'] == tag_store error_handling.index(ind, dic) hop = self.set_given_hopping(dic['n'], size, dic, ind, low=low) else: error_handling.angle(dic['ang'], np.unique(self.store_hop[dic['n']]['ang']), low) error_handling.tag(dic['tag'], np.unique(self.store_hop[dic['n']]['tag'])) if dic['ang'] >= 0: ang_store = dic['ang'] else: ang_store = dic['ang'] + 180. if not low: tag_store = dic['tag'] else: tag_store = dic['tag'][::-1] size = np.sum((self.store_hop[dic['n']]['tag'] == tag_store) & (np.isclose(ang_store, self.store_hop[dic['n']]['ang'], atol=ATOL))) bool1 = (self.hop['n'] == dic['n']) & (self.hop['tag'] == dic['tag']) bool2 = np.isclose(self.hop['ang'], dic['ang'], atol=ATOL) mask = bool1 & bool2 if np.sum(mask): self.hop = self.hop[np.logical_not(mask)] ind = ((self.store_hop[dic['n']]['tag'] == tag_store) & (np.isclose(ang_store, self.store_hop[dic['n']]['ang'], atol=1))) error_handling.index(ind, dic) hop = self.set_given_hopping(dic['n'], size, dic, ind, low=low) self.hop = np.concatenate([self.hop, hop])
[docs] def check_sites(self): ''' Private method. Check if the number of sites was changed after calling the method system.set_hopping(). ''' if self.sites != self.lat.sites: self.store_hop = {} self.sites = self.lat.sites
[docs] def set_given_hopping(self, n, size, dic, mask, low): ''' Private method. Fill self.hop. :param n: Integer. Hopping type. :param size: Integer. Number of hoppings. :param doc: Dictionary. Hopping dictionary. :param mask: np.ndarray. Mask. :param low: Boolean. If True, self.hop['i'] > self.hop['j']. ''' hop = np.empty(size, dtype=[('n', 'u2'), ('i', 'u4'), ('j', 'u4'), ('ang', 'f8'), ('tag', 'S2'), ('t', 'c16')]) hop['n'] = dic['n'] hop['t'] = dic['t'] if not low: hop['i'] = self.store_hop[n]['i'][mask] hop['j'] = self.store_hop[n]['j'][mask] hop['ang'] = self.store_hop[n]['ang'][mask] hop['tag'] = self.store_hop[n]['tag'][mask] else: hop['i'] = self.store_hop[n]['j'][mask] hop['j'] = self.store_hop[n]['i'][mask] hop['ang'] = self.store_hop[n]['ang'][mask] - 180 hop['tag'] = npc.add(self.lat.coor['tag'][hop['i']], self.lat.coor['tag'][hop['j']]) return hop
[docs] def set_hopping_manual(self, dict_hop, low=False): ''' Set hoppings manually. :param dict_hop: Dictionary of hoppings. key: hopping indices, val: hopping values. ''' hop = np.zeros(len(dict_hop), dtype=[('n', 'u2'), ('i', 'u4'), ('j', 'u4'), ('ang', 'f8'), ('tag', 'S2'), ('t', 'c16')]) i = [h[0] for h in dict_hop.keys()] j = [h[1] for h in dict_hop.keys()] t = [val for val in dict_hop.values()] hop['i'], hop['j']= i, j hop['t'] = t hop['tag'] = npc.add(self.lat.coor['tag'][i], self.lat.coor['tag'][j]) ang = 180 / PI * np.arctan2(self.lat.coor['y'][j]-self.lat.coor['y'][i], self.lat.coor['x'][j]-self.lat.coor['x'][i]) if not low: ang[ang < 0] += 180 else: ang[ang >= 0] -= 180 hop['ang'] = ang self.hop = np.concatenate([self.hop, hop])
[docs] def set_hopping_dis(self, alpha): ''' Set uniform hopping disorder. :param alpha: Complex or Real number. Disorder stength. Example usage:: sys.set_hopping_dis(alpha=0.1) ''' error_handling.empty_hop(self.hop) error_handling.number(alpha, 'alpha') self.hop['t'] *= 1. + alpha * rand.uniform(-1., 1., len(self.hop))
[docs] def set_onsite_dis(self, alpha): ''' Set uniform onsite disorder. :param alpha: Complex or Real number. Disorder stength. Example usage:: sys.set_onsite_dis(alpha=0.1) ''' error_handling.empty_onsite(self.onsite) error_handling.number(alpha, 'alpha') self.onsite += alpha * rand.uniform(-1., 1., self.lat.sites)
[docs] def set_onsite_def(self, onsite_def): ''' Set specific onsite energies. :param onsite_def: Dictionary. key: site indices, val: onsite values. Example usage:: set_onsite_def(0: 1., 1: -1j) ''' error_handling.empty_onsite(self.onsite) error_handling.set_onsite_def(onsite_def, self.lat.sites) for i, o in onsite_def.items(): self.onsite[i] = o
[docs] def set_hopping_def(self, hopping_def): ''' Set specific hoppings. :param hopping_def: Dictionary of hoppings. key: hopping indices, val: hopping values. Example usage:: sys.set_hopping_def({(0, 1): 1., (1, 2): -1j}) ''' error_handling.empty_hop(self.hop) error_handling.set_hopping_def(self.hop, hopping_def, self.lat.sites) for key, val in hopping_def.items(): print(key[0], key[1], val) print(self.vec_hop['ang'].size) cond = (self.hop['i'] == key[0]) & (self.hop['j'] == key[1]) self.hop['t'][cond] = val self.hop['ang'] = self.vec_hop['ang'][key[0], key[1]] self.hop['tag'] = npc.add(self.lat.coor['tag'][key[0]], self.lat.coor['tag'][key[1]])
[docs] def set_new_hopping(self, list_hop, ind): ''' Private method. Set new hoppings. :param list_hop: List of Dictionary (see set_hopping definition). :param ind: List. List of indices. ''' for dic in list_hop: if len(dic) == 2: self.hop['t'][ind] = dic['t'] elif len(dic) == 3 and 'ang' in dic: self.hop['t'][ind & (self.hop['ang'] == dic['ang'])] = dic['t'] elif len(dic) == 3 and 'tag' in dic: self.hop['t'][ind & (self.hop['tag'] == dic['tag'])] = dic['t'] else: self.hop['t'][ind & (self.hop['tag'] == dic['tag']) & (self.hop['ang'] == dic['ang'])] = dic['t']
[docs] def find_square(self, xlims, ylims): ''' Private method. Find hoppings within the square. :param xlims: List or Tuple. :math:`x` interval. :param ylims: List or Tuple. :math:`y` interval. ''' error_handling.lims(xlims) error_handling.lims(ylims) in1 = (self.lat.coor['x'][self.hop['i']] >= xlims[0]) & \ (self.lat.coor['y'][self.hop['i']] >= ylims[0]) & \ (self.lat.coor['x'][self.hop['j']] >= xlims[0]) & \ (self.lat.coor['y'][self.hop['j']] >= ylims[0]) in2 = (self.lat.coor['x'][self.hop['i']] <= xlims[1]) & \ (self.lat.coor['y'][self.hop['i']] <= ylims[1]) & \ (self.lat.coor['x'][self.hop['j']] <= xlims[1]) & \ (self.lat.coor['y'][self.hop['j']] <= ylims[1]) return in1 * in2
[docs] def find_ellipse(self, rx, ry, x0, y0): ''' Private method. Find hoppings within the ellipse. :param rx: Positive Float. Radius along :math:`x`. :param ry: Positive Float. Radius along :math:`y`. :param x0: Float. Defalut value 0. :math:`x` center. :param y0: Float. Defalut value 0. :math:`x` center. ''' in1 = (self.lat.coor['x'][self.hop['i']] - x0) ** 2 / rx ** 2 + \ (self.lat.coor['y'][self.hop['i']] - y0) ** 2 / ry ** 2 <= 1. in2 = (self.lat.coor['x'][self.hop['j']] - x0) ** 2 / rx ** 2 + \ (self.lat.coor['y'][self.hop['j']] - y0) ** 2 / ry ** 2 <= 1. return in1 * in2
[docs] def change_hopping_square(self, list_hop, xlims, ylims=[-1., 1.]): ''' Change hopping values. :param list_hop: List of Dictionary (see set_hopping definition). :param xlims: List or Tuple. :math:`x` interval. :param ylims: List or Tuple. :math:`y` interval. ''' error_handling.empty_hop(self.hop) error_handling.set_hopping(list_hop, self.nmax) ind = self.find_square(xlims, ylims) self.set_new_hopping(list_hop, ind)
[docs] def change_hopping_ellipse(self, list_hop, rx, ry, x0=0., y0=0.): ''' Change hopping values. :param list_hop: List of Dictionary (see set_hopping definition). :param rx: Positive Float. Radius along :math:`x`. :param ry: Positive Float. Radius along :math:`y`. :param x0: Float. Default value 0. :math:`x` center. :param y0: Float. Default value 0. :math:`y` center. ''' error_handling.empty_hop(self.hop) error_handling.set_hopping(list_hop, self.nmax) error_handling.positive_real(rx, 'rx') error_handling.positive_real(ry, 'rx') error_handling.real_number(x0, 'x0') error_handling.real_number(y0, 'y0') ind = self.find_ellipse(rx, ry, x0, y0) self.set_new_hopping(list_hop, ind)
[docs] def get_coor_hop(self): ''' Get the site coordinates in hopping space only considering the nearest neighbours hoppings. ''' error_handling.empty_hop(self.hop) visited = np.zeros(self.lat.sites, 'u2') self.coor_hop = np.zeros(self.lat.sites, dtype=[('x','f8'), ('y','f8'), ('tag', 'S1')]) self.coor_hop['tag'] = self.lat.coor['tag'] hop = self.hop[self.hop['n'] == 1] hop_down = np.copy(hop) hop_down['i'] = hop['j'] hop_down['j'] = hop[ 'i'] hop_down['ang'] = -180 + hop['ang'] hop = np.concatenate([hop, hop_down]) i_visit = np.min(hop['i']) while True: hs = hop[hop['i'] == i_visit] for h in hs: if visited[h['j']] == 2: continue self.coor_hop['x'][h['j']] = self.coor_hop['x'][i_visit] + \ h['t'].real*cos(PI / 180 * h['ang']) self.coor_hop['y'][h['j']] = self.coor_hop['y'][i_visit] + \ h['t'].real*sin(PI / 180 * h['ang']) visited[h['j']] = 1 visited[i_visit] = 2 explored = np.argwhere(visited == 1) if not explored.any(): break i_visit = explored[0]
[docs] def get_ham(self): ''' Get the Tight-Binding Hamiltonian using sys.hop. ''' error_handling.empty_hop(self.hop) error_handling.hop_sites(self.hop, self.lat.sites) if np.all(self.hop['ang'] >= 0) or np.all(self.hop['ang'] < 0): self.ham = sparse.csr_matrix((self.hop['t'], (self.hop['i'], self.hop['j'])), shape=(self.lat.sites, self.lat.sites)) \ + sparse.csr_matrix((self.hop['t'].conj(), (self.hop['j'], self.hop['i'])), shape=(self.lat.sites, self.lat.sites)) else: self.ham = sparse.csr_matrix((self.hop['t'], (self.hop['i'], self.hop['j'])), shape=(self.lat.sites, self.lat.sites)) if self.onsite.size == self.lat.sites: self.ham += sparse.diags(self.onsite, 0)
[docs] def get_eig(self, eigenvec=False, left=False): ''' Get the eigenergies, eigenvectors and polarisation. :param eigenvec: Boolean. Default value False. If True, get the eigenvectors. :param left: Boolean. Default value False. If True, get the left eigenvectors too. Relevant for non-Hermitian matrices. ''' error_handling.empty_ham(self.ham) error_handling.boolean(eigenvec, 'eigenvec') error_handling.boolean(left, 'left') if eigenvec: if (self.ham.H != self.ham).nnz: if not left: self.en, self.rn = LA.eig(self.ham.toarray()) else: self.en, self.rn, self.ln = LA.eig(self.ham.toarray(), left=left) ind = np.argsort(self.en.real) self.en = self.en[ind] self.rn = self.rn[:, ind] if self.ln.size: self.ln = self.ln[:, ind] else: self.en, self.rn = LA.eigh(self.ham.toarray()) self.intensity = np.abs(self.rn) ** 2 self.pola = np.zeros((self.lat.sites, len(self.lat.tags))) for i, tag in enumerate(self.lat.tags): self.pola[:, i] = np.sum(self.intensity[self.lat.coor['tag'] == tag, :], axis=0) else: if (self.ham.H != self.ham).nnz: self.en = LA.eigvals(self.ham.toarray()) ind = np.argsort(self.en.real) self.en = self.en[ind] else: self.en = LA.eigvalsh(self.ham.toarray())
[docs] def get_ipr(self): r''' Get the Inverse Participation Ratio: .. math:: IPR_n = |\sum_i\psi_i^{n}|^4\, . ''' error_handling.empty_ndarray(self.rn, 'sys.get_eig(eigenvec=True)') self.ipr = np.sum(self.intensity ** 2, axis=0)
[docs] def get_petermann(self): r''' Get the Petermann factor: .. math:: K_n = \frac{\langle\psi_L^{n}|\psi_L^{n}\rangle\langle\psi_R^{n}|\psi_R^{n}\rangle}{\langle\psi_L^{n}|\psi_R^{n}\rangle}\, . .. note:: LA.eig fixes the norm such that :math:`\langle\psi_L^{n}|\psi_L^{n}\rangle = 1` and :math:`\langle\psi_R^{n}|\psi_R^{n}\rangle = 1`. ''' if not (self.ham.H != self.ham).nnz: self.petermann = np.ones(self.lat.sites) return error_handling.empty_ndarray(self.ln, 'sys.get_eig(eigenvec=True, left=True)') left_right = np.sum(self.ln * np.conjugate(self.rn), axis=0).real self.petermann = 1. / left_right ** 2
[docs] def get_intensity_pola_max(self, tag_pola): ''' Get the state with largest polarization on one sublattice. :param tag_pola: Binary char. Sublattice tag. :returns: * **intensity** -- Intensity of max polarized state on *tag*. ''' error_handling.empty_ndarray(self.rn, 'sys.get_eig(eigenvec=True)') error_handling.tag(tag_pola, self.lat.tags) i_tag = self.lat.tags == tag_pola ind = np.argmax(self.pola[:, i_tag]) print('State with polarization: {:.5f}'.format(float(self.pola[ind, i_tag]))) return self.intensity[:, ind]
[docs] def get_intensity_pola_min(self, tag_pola): ''' Get the state with smallest polarization on one sublattice. :param tag_pola: Binary char. Sublattice tag. :returns: * **intensity** -- Intensity of max polarized state on *tag*. ''' error_handling.empty_ndarray(self.rn, 'sys.get_eig(eigenvec=True)') error_handling.tag(tag_pola, self.lat.tags) i_tag = self.lat.tags == tag_pola ind = np.argmin(self.pola[:, i_tag]) print('State with polarization: {:.5f}'.format(float(self.pola[ind, i_tag]))) return self.intensity[:, ind]
[docs] def get_intensity_en(self, lims): ''' Get, if any, the intensity of the sum of the states between *lims[0]* and *lims[1]*. :param lims: List. lims[0] energy min, lims[1] energy max. :returns: * **intensity** -- Sum of the intensities between (lims[0], lims[1]). ''' error_handling.empty_ndarray(self.rn, 'sys.get_eig(eigenvec=True)') error_handling.lims(lims) ind = np.where((self.en > lims[0]) & (self.en < lims[1])) ind = np.ravel(ind) print('{} states between {} and {}'.format(len(ind), lims[0], lims[1])) return np.sum(self.intensity[:, ind], axis=1)